2.1-2.2: Simple and Compound Interest with Spreadsheets

Group Activity

Use a spreadsheet on a Chromebook, smartphone, laptop or tablet to work on these problems. Write down the spreadsheet syntax to show your work. For example: =FV(.05/12, 2*12, 0, 1000).

Answer each question in a complete sentence.

1. Your uncle is giving you a simple interest loan of \$500 for one year at 4% interest. <u>What is the total amount you will owe him?</u>

=500+500*0.04*1=\$520

I would owe my uncle \$520 after one year.

2. You borrowed \$1500 from another relative. She charged you 5% APR, compounded monthly. If you paid her back 2 years later, how much money did you give her?

=FV(0.05/12, 12*2, 0, 1500)

=\$1,657.41

I would owe my relative \$1,657.41 after 2 years.

3. You got a bonus of \$7,500 and you want to start a college fund for your child. You find an account paying 9.75% APR compounded quarterly. If your child just turned two years old, <u>how much will you have when they turn 18</u>? How much of that account balance is interest?

Since they just turned 2, we have 16 more years.

=FV(0.0975/4, 16*4, 0, 7500)

=\$35,029.62

I would have \$35,029.62 when my child turns 18.

To calculate the amount that is interest: \$35,029.62 - \$7,500 = \$27,529.62.

The amount of interest earned is \$27,529.62.

4. Calculate how much you would have in problem 3 above if it was compounded continuously instead of quarterly.

=7500*exp(.0975*16)

=\$35,691.16

I would have \$35,691.16 when my child turns 18 if the interest was compounded continuously.

5. If you are considering a credit card with an APR of 27.49%, compounded daily, <u>what</u> <u>annual rate</u> are you <u>effectively paying</u>?

=Effect(.2749, 365)

 ≈ 0.316262829

 $\approx 31.63\%$

If I am using a credit card with an APR of 27.49%, compounded daily, I am effectively paying 31.63% per year.

6. <u>How much would you need to deposit today</u> to have one million dollars if you can find an account that pays 10% interest compounded daily for 50 years?

=PV(0.10/365, 50*365, 0, 1000000)

=\$6,742.56

If I could deposit \$6,742.56 in an account with 10% interest compounded daily, I would have one million dollars in 50 years.

Challenge Problem

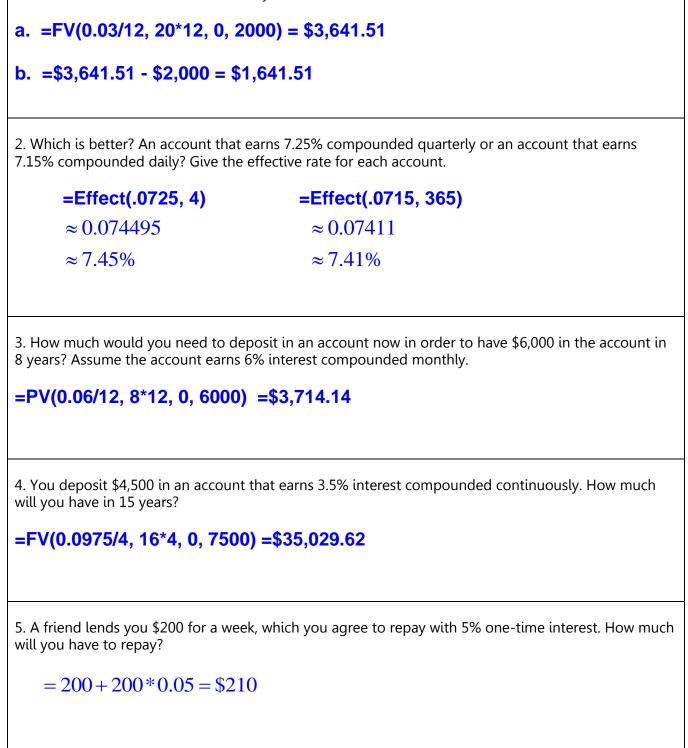
Sage deposited \$2498 into an account paying 7.05% APR, compounded quarterly. Dionne deposited \$2994 into an account paying 5.19% APR, compounded monthly. How many years will it take for their balances to (nearly) match?

Write a spreadsheet formula for each person, using a cell reference for the year. Then you can copy the formula down using the fill-down feature.

With cell references:

Year	Sage	Dionne
1	=FV(0.0705/4, A2*4, 0, 2498)	=FV(0.0519/12, A2*12, 0, 2994)
2	=FV(0.0705/4, A3*4, 0, 2498)	=FV(0.0519/12, A3*12, 0, 2994)
3	=FV(0.0705/4, A4*4, 0, 2498)	=FV(0.0519/12, A4*12, 0, 2994)

Full Table:


Year	Sage	Dionne
1	\$2,678.82	\$3,153.14
2	\$2,872.73	\$3,320.74
3	\$3,080.67	\$3,497.24
4	\$3,303.67	\$3,683.13
5	\$3,542.81	\$3,878.90
6	\$3,799.26	\$4,085.07
7	\$4,074.27	\$4,302.20
8	\$4,369.19	\$4,530.87
9	\$4,685.46	\$4,771.70
<mark>10</mark>	<mark>\$5,024.62</mark>	<mark>\$5,025.33</mark>
11	\$5,388.33	\$5,292.44
12	\$5,778.37	\$5,573.75
13	\$6,196.64	\$5,870.00
14	\$6,645.19	\$6,182.01
15	\$7,126.21	\$6,510.60

Their balances are about the same after 10 years. Dionne starts out with a higher deposit but after 10 years, Sage passes her due to the higher interest rate.

Round-Robin Problems. Choose two people from your group to travel together and two to stay. Use the space below to write your formula for each problem.

1. You deposit \$2000 in an account earning 3% interest compounded monthly.

- a. How much will you have in the account in 20 years?
- b. How much interest will you earn?

