3.3: Summary Statistics: Measures of Center

Class Prep Assignment

We Describe Four Characteristics of Data: Shape, Center and Spread, and Outliers

Example. The grades on the third exam for a MTH 95 class were as follows: 82 74 67 81 49 84 52 91 66 75 96 73 71 78 49 86 85 62 58

a) Make a histogram of the data to determine its shape.

Shape of the Histogram:

Unimodal

Bimodal

Multimodal

Symmetric

Skewed to the Left (Mean less than median)

Skewed to the Right (Mean greater than median)

Page 1

Measures of Center or Average

Mean:

Median: odd number of values: even number of values:

Mode:

b) Arrange the grades above in order:

c) Find the mean

e) Find the mode(s), if any

d) Find the median

Name

Due at the beginning of next class

Name_____

3.4: Summary Statistics: Measures of Variation

Class Prep Assignment

Due at the beginning of next class

Measures of Spread

Range:

Interquartile Range (IQR):

Standard Deviation:

Five-Number Summary and Boxplot: Minimum, Q1, Median, Q3, Maximum

Continuing with the test scores in order, find the following:

49, 49, 52, 58, 62, 66, 67, 71, 73, 74, 75, 78, 81, 82, 84, 85, 86, 91, 96

f) Five-number summary:

g) Range:

h) Interquartile Range (IQR):

i) Draw and label the boxplot:

Outliers

j) Are there any outliers in this data?

Which Measures to Use?

If the data is symmetric, use the mean and standard deviation If the data is skewed, use the median and the IQR

Cara Lee

Name _____

Standard Deviation

Standard Deviation The "average deviation from the mean." Can be approximated by the Range÷4 if the data is evenly spread without outliers.

$$s = \sqrt{\frac{\sum (x - mean)^2}{n - 1}}$$

49, 49, 52, 58, 62, 66, 67, 71, 73, 74, 75, 78, 81, 82, 84, 85, 86, 91, 96

Data	Deviation from N	1ean Squared Devia	tion		
49					
49					
52					
58					
62					
66					
67					
71					
73					
74					
75					
78					
81					
82					
84					
85					
86					
91					
96					
Sum of the squared deviations:					

$$s = \sqrt{\frac{\sum (x - mean)^2}{n - 1}} =$$

Standard Deviation Approximation: Range/4. How do they compare in this case?

Cara Lee