4.2: Theoretical Probability

Group Activity

Coin Toss. In the video we looked at the theoretical probabilities for flipping a quarter, dime and nickel. Now we will do a class experiment to find empirical probabilities.

1. Empirical Probability. Get a quarter, nickel and dime for your group. Take turns tossing them for a total of 10 trials. Record H or T for each coin in each trial.

them for a total of 10 titals. Record if of 1 for each countificacific tital.										
Trial	1	2	3	4	5	6	7	8	9	10
Quarter										
Nickel										
Dime										

2. From your 10 trials, count the number of times you got 0 heads, 1 head, 2 heads and 3 heads. Write the number in each column. They should add up to 10 trials.

Number of Heads	0	1	2	3
Group Count				

3. Combining the Class Data. Record your totals on the class sheet on the document camera. Once all the data is added, write the totals in the next table. Number of trials_____

Number of Heads	0	1	2	3
Total Class Count				

4. Empirical Probability Model. Using the class totals, calculate the empirical probability of each outcome.

Number of Heads	0	1	2	3
Empirical Probability				

5. Compare these numbers to the theoretical outcomes on your notes. How do they compare?

6. What would you expect if we repeated this experiment for 1000 trials?

Cara Lee Page 1

Theoretical Probability

7. Using the prize wheel below, make a theoretical probability model and then use it to find the probabilities below.

	Sub	Drink	Cookies	Chips	BOGO	Mystery Prize
Probability						

- 8. If you spin the wheel once, what's the probability that you get
 - a. chips or a drink?
 - b. not the mystery prize?
 - c. a drink or not BOGO?

- 9. Find the following odds:
 - a. The odds of winning the mystery prize.
 - b. The odds against winning the mystery prize.
 - c. The odds on winning a sandwich.
- 10. If you get to spin the wheel repeatedly, would that be like drawing with or without replacement?
 - a. If you get to spin 3 times, what is the chance you would get 3 bags of chips?
 - b. If you get to spin twice, what is the chance you will get two BOGO's?

Cara Lee Page 2 11. The t-shirts for your school group just arrived: 5 red small, 5 orange small, 10 red medium, 10 orange medium, 15 red large, 15 orange large, 10 red extra-large, 10 orange extra-large.

If you grab one t-shirt at random, what is the probability that

- a. it is a small or an extra-large?
- b. it is extra-large or orange?

- c. it is not small or medium?
- d. it is not small or red?

- 12. If five people come up and you draw 5 shirts at random, what is the probability that
 - a. they are all red larges?

b. there is at least one orange extra-large?

Cara Lee Page 3