\qquad

4.3: Expected Value

Class Prep Assignment

Due at the beginning of next class
The Law of Large Numbers: In an experiment with independent trials, as you increase the number of trials the relative frequency gets closer to the theoretical probability.

Example 1. Theo rolled a standard 6-sided die 1,000 times and recorded that the number 2 came up 100 times. He suspects that the die is not fair. Is he correct?

Gambler's Fallacy: The mistaken belief that a streak or run of bad luck will make the opposite outcome more likely.

Expected Value: The long run average or mean value for many repeated samples.
The expected value is an \qquad that is weighted by the \qquad .

Example 2. A lottery ticket has five possible prize amounts and the chances of winning each are shown in the probability model.

Prize	$\$ 1$	$\$ 10$	$\$ 50$	$\$ 1000$	0
Probability	$\frac{1}{5}$	$\frac{1}{50}$	$\frac{1}{100}$	$\frac{1}{2000}$	$\frac{1539}{2000}=0.7695$

a. Find the expected value for this lottery ticket.
b. If the cost of the ticket is $\$ 2$, what are your expected winnings?

Example 3. Primo Insurance sells an annual car insurance policy for $\$ 1,350$. Based on past data collected, an average of 1 in 50 policyholders will file a $\$ 6,000$ claim, an average of 1 in 100 policyholders will file a $\$ 15,000$ claim, and an average of 1 in 300 policyholders will file a \$33,000 claim.

Insurance Payout				
Probability				

a. Find the expected value for the amount that Primo will pay per policy.
b. What is the expected profit or loss per policy?

