\qquad

The Normal Distribution

The Normal Distribution - The bell-shaped curve

Used when the data is unimodal and approximately symmetric (mean = median)

Sources: http://www.dummies.com/education/math/statistics/interpreting-histograms/ https://learnandteachstatistics.wordpress.com/2012/11/12/beware-of-excel-histograms/ https://www.xlstat.com/en/solutions/features/histograms

How to label a Normal Distribution - The standard deviation is the scale
Example. Heights of 10 -year-olds of all genders closely follow a normal distribution with a mean of 55 inches and a standard deviation of 6 inches. Label the normal curve.

The 68-95-99.7 Rule for a Normal Distribution (Empirical Rule)

\qquad

Calculating Probabilities with the Empirical Rule

Example Continued. Find the probability that a randomly selected 10-year-old is:
a. between 49 and 61 inches
b. between 55 and 61 inches
c. greater than 61 inches
d. 37 inches or less

Z-Scores (Standard Scores)

The number of standard deviations that a value is away from the mean.

$$
Z=\frac{x-\text { mean }}{s}
$$

e. Find the Z-score for a 10-year-old height of 52 inches and give its interpretation.

Percentile

The $x^{\text {th }}$ percentile is the value that $x \%$ of the data values are below.
f. A 10-year-old is in the $86^{\text {th }}$ percentile in height. This means the child is taller than \qquad \% of 10-year-olds.

Use the Empirical Rule to Find Percentiles

Find the corresponding percentiles for the Z-scores.

Z-score	Percentile
-3	
-2	
-1	
0	
1	
2	
3	

