Name

The Normal Distribution

Class Prep Assignment

Due at the beginning of next class

The Normal Distribution – The bell-shaped curve

Used when the data is unimodal and approximately symmetric (mean = median)

https://learnandteachstatistics.wordpress.com/2012/11/12/beware-of-excel-histograms/ https://www.xlstat.com/en/solutions/features/histograms

How to label a Normal Distribution - The standard deviation is the scale

Example. Heights of 10-year-olds of all genders closely follow a normal distribution with a mean of 55 inches and a standard deviation of 6 inches. Label the normal curve.

The 68-95-99.7 Rule for a Normal Distribution (Empirical Rule)

Name

Calculating Probabilities with the Empirical Rule

Example Continued. Find the probability that a randomly selected 10-year-old is:

a. between 49 and 61 inches

- b. between 55 and 61 inches
- c. greater than 61 inches
- d. 37 inches or less

Z-Scores (Standard Scores)

The number of standard deviations that a value is away from the mean.

$$Z = \frac{x - mean}{s}$$

e. Find the Z-score for a 10-year-old height of 52 inches and give its interpretation.

Percentile

The x^{th} percentile is the value that x% of the data values are below.

f. A 10-year-old is in the 86th percentile in height. This means the child is taller than ______% of 10-year-olds.

Use the Empirical Rule to Find Percentiles

Find the corresponding percentiles for the Z-scores.

Z-score	Percentile
-3	
-2	
-1	
0	
1	
2	
3	

