The number of piercings was quantitative data so we found a sampling distribution for the mean of each sample. Now we are going to make a sampling distribution for categorical (yes/no) data. We need to see what random samples of proportions look like before we can make inferences. Let's take an anonymous poll of our class. If we take samples of 3 students, what will the histogram look like? What if we take samples of 5 students?

Statistical question: \qquad

Whole Class Proportion

Random Sample
Sample Proportion, \hat{p}
Population proportion, $p=$

Histogram of Sample Proportions with $\mathbf{n}=\mathbf{3}$

Proportion in the sample who \qquad

Histogram of Sample Proportions with $\mathbf{n}=\mathbf{5}$

Let's use a simulator app to see what larger samples of proportions look like. http://www.lock5stat.com/StatKey/sampling 1 cat/sampling 1 cat.html

Assume the population proportion is $p=0.15$. Let's look at $n=5,10,50,100,500,1000$.
$n=5$
StatKey Sampling Distribution for a Proportion
Custom Data ~ Edit Proportion Edit Data Choose samples of size $n=5$

Generate 1 Sample	Generate 10 Samples	Generate 100 Samples	Generate 1000 Samples Reset Plot

Sampling Dotplot of Proportion

$\mathrm{n}=10$
StatKey Sampling Distribution for a Proportion
Coston Dom r Edit Proporion Edid Data Choose samples of size $n=10$
Ceserate I Sample Cenerate 10 Samples Geesate 100 Samples Ceserate 1000 Sangles Reset Hot
Sampling Dotplot of Proportion

$\mathrm{n}=50$
StatKey Sampling Distribution for a Proportion

Semping Dotple of foporion

The population proportion is $\mathrm{p}=0.15$

$n=500$

$n=1000$

If we take large enough samples, regardless of the original percentage, the percentage of a sample has a \qquad distribution. As the sample size gets \qquad the standard deviation gets \qquad _.

To get a proportion, we are taking a Binomial model and changing it from the number who answered "yes" to the fraction or percentage who answered "yes".

For example, http://elections.huffingtonpost.com/pollster/us-health-bill has survey data from Feb 7-8, 2017, that says 47 out of 100 people favor the Affordable Care Act, which is a sample proportion of 47%. 39% opposed it in the same survey and 14% were undecided.

We can adjust the Binomial formulas by dividing by the total sampled, which is n.

$$
\sigma=\sqrt{n p q}
$$

Proportion (percentage), $\widehat{\boldsymbol{p}}=\frac{X}{n}$

$$
\mu=p
$$

$\sigma^{2}=\frac{p q}{n}$
$\sigma=\sqrt{\frac{p q}{n}}$

The Sampling Distribution Model for a Proportion

\hat{p} is the sample proportion or the proportion who answered "yes" in the sample.
If the four conditions below are satisfied, the sampling distribution for \hat{p} is modeled by a Normal distribution with the following parameters:

$$
\mu_{\hat{p}}=p \quad \sigma_{\hat{p}}=\sqrt{\frac{p q}{n}} \quad \hat{p} \sim N\left(p, \sqrt{\frac{p q}{n}}\right)
$$

The Normal model is an appropriate approximation for sample proportions if the following conditions hold:

- Independence: The individuals or items must be independent of each other
- Randomization: The samples need to be randomly chosen, or it's not safe to assume independence
- 10% Condition: Once you've sampled more than 10% of a population, the remaining individuals or items are not considered independent of each other
- Success/Failure Condition: $n p \geq 10$ and $n q \geq 10$. The sample size must be large enough to make the distribution symmetric and close to a Normal distribution.

Example 1. Let's say that in the US population, 35% of employees feel engaged at work. (Remember that we are pretending to know the population parameter so we can see how samples behave). You decide to take a random sample of 100 workers and ask whether they feel engaged at work.
a. Discuss each of the conditions required to use a sampling distribution for the proportion of employees who feel engaged at work.
b. Define the sampling distribution model and its parameters.
c. Sketch and label the model.
d. What is the probability that in the sample of 100 you would get 38% or more who say they feel engaged at work?
e. What is the probability that in the sample of 100 you would get fewer than 25% who say they feel engaged at work?

Example 2. Let's say that 20% of plain $m \& m$'s are green. In a random sample of 500 plain m\&m's you find that 123 are green.
a. Discuss each of the conditions required to use a sampling distribution for the proportion of green m\&m's.
b. Define the sampling distribution model and its parameters.
c. Sketch and label the model.
d. What is the probability of getting the result you found?
e. Is this an unusual result? How many standard deviations away from the mean is the result? Explain.

Practice 1. Information on a packet of seeds claims that the germination rate is 92%. There are approximately 160 seeds in each packet.
a. Discuss each of the conditions required to use a sampling distribution for the proportion of seeds that will germinate.
b. Define the sampling distribution model and its parameters.
c. Sketch and label the model.
d. What is the probability that more than 95% of the seeds will germinate?
e. Would it be unusual for only 140 or fewer of the 160 seeds to germinate? Explain.

Practice 2. A survey of eating habits showed that approximately 4\% of people in Portland, Oregon are vegans and do not eat any animal products. A restaurant in Portland expects 300 people on opening night and the chef is planning the menu and the quantities of food needed.
a. Discuss each of the conditions required to use a sampling distribution for the proportion of vegan meals needed for opening night.
b. Define the sampling distribution model and its parameters.
c. Sketch and label the model.
d. If there are ingredients for 14 vegan meals, what is the probability that there will not be enough vegan meals? In other words, what is the probability that 15 or more customers will order a vegan meal?
e. How many vegan meals should be available so that there is only a 2% chance of running out of vegan meals? How many so there is only a 1% chance?

