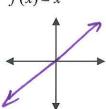
Math 111 - Wed, 5/18 Return tests + 90 over (need to collect) until monday New Material: 3.1 Week 8 5/21 Saturday is Checkpoint 7 next wed (3.1+3.4) the last day to charge grading options or withdraw Holiday on 5/30 Class party on the last day 5, 611 Final monday, 6/6

Math 111 **Basic Function Library**

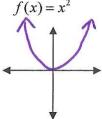
You will want to know these basic functions and their shapes / behavior. They will be important in recognizing the type of functions you might see graphically, in an equation or expression, as well as graph transformations.

Quickly sketch a graph of the basic function:

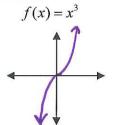
$$f(x) = x$$



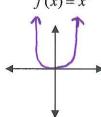
$$f(x) = x^2$$



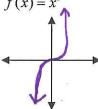
Polynomials $f(x) = x^3$



$$f(x) = x^4$$



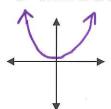
$$f(x) = x^5$$



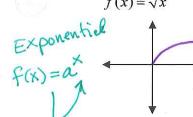
$$f(x) = x^n$$
 where *n* is odd.



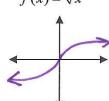
$$f(x) = x^m$$
 where m is even.



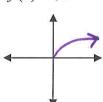
$$f(x) = \sqrt{x}$$



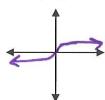
Radicals or Roots $f(x) = \sqrt[3]{x}$



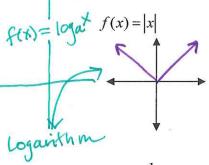
$$f(x) = \sqrt[4]{x}$$

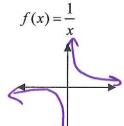


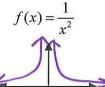
$$f(x) = \sqrt[5]{x}$$

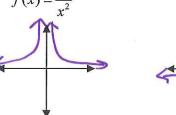


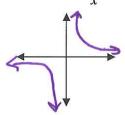
Rational



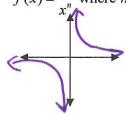




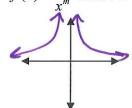




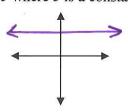
$$f(x) = \frac{1}{x^n}$$
 where *n* is odd.



$$f(x) = \frac{1}{x^m}$$
 where m is even.



$$f(x) = c$$
 where c is a constant.



Math 111 Lecture Notes

SECTION 3.1: POLYNOMIAL FUNCTIONS

Standard form Standard form $f(x) = 3x^2 + 2x^2 - \frac{1}{2}$ f(x) = (x-2)(x+4)

factored form

A power function is of the form $f(x) = a_n x^n$ where a_n is a real number and n is a non-negative integer.

A polynomial function is of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

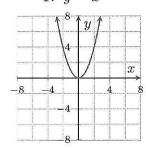
where $a_n, a_{n-1}, \ldots, a_1, a_0$ are real numbers and n is a non-negative integer.

The leading term is $a_n x^n$. This determines the long-run behavior of the function.

The degree of the polynomial is n. hy heat power

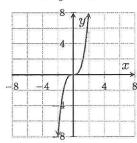
Basic Power Functions

FIGURE 1. $y = x^2$



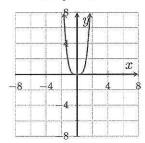
FIGURE

2.
$$y = x^3$$



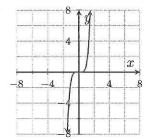
· FIGURE

3.
$$y = x^4$$



FIGURE

4.
$$y = x^5$$



Basic Power Functions (close up)

FIGURE 5. Even Powers

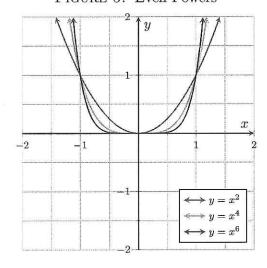
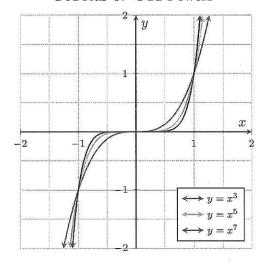
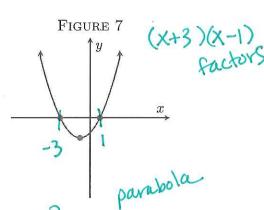


FIGURE 6. Odd Powers



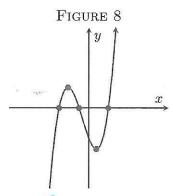
General Polynomial Functions



• Degree:

Max. # of zeros: 2

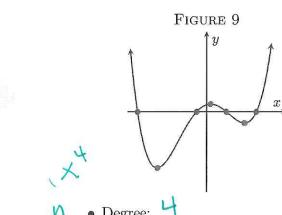
Max. # of turning points:



• Degree: 3

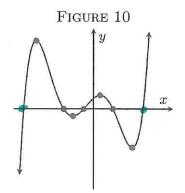
• Max. # of zeros: 3

• Max. # of turning points: 2



• Max. # of zeros: 4
• Max. # of turning points: 3

could have fewer



• Degree: 5

• Max. # of zeros: 5

• Max. # of turning points:

A polynomial function f has a real zero r if and only if (x-r) is a factor of f(x).

If r is a zero of even multiplicity, then the factor (x-r) occurs an even number of times. The graph then looks like the graph of an even power function at that zero. Hence the function

"bounces" there.

If r is a zero of odd multiplicity, then the factor (x-r) occurs an odd number of times. The graph then looks like the graph of an odd power function at that zero. Hence, if (x-r) occurs once, the function passes "straight through" at that zero and if (x-r) occurs any other odd number of time, the function "flattens" there.

Instructor: A.E.Cary

Page 2 of 8

4x(x-1)(x+1)(x+2)=0

Math 111 Lecture Notes 4x = 0 or x - 7 = 0 or x + 1 = 0 or x + 2 = 0 Section 3.1 Example 1. Let $f(x) = 4x(x - 7)^2(x + 1)^5(x + 2)^3$. Determine the following:

(a) the zeros and their respective multiplicaties

Zeros	mult	plicity
0		odd
7	2	even
-1	5	odd
-2 1	2	nd A

(b) the degree and long-run behavior

1st term - long-run behavior tails

AS X >00, y >00 ASX>-00,4>-00

Example 2. Graph the polynomial function defined by $f(x) = -\frac{1}{2}(x-2)(x+4)$ by finding the following: the degree of the polynomial, the long run behavior, the maximum number of turning points, the horizontal and vertical intercepts, and the zeros and their multiplicity.

degree: 2 long=run behavior

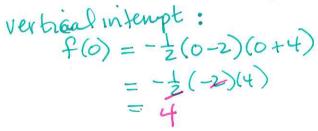
1st term: - 2x2

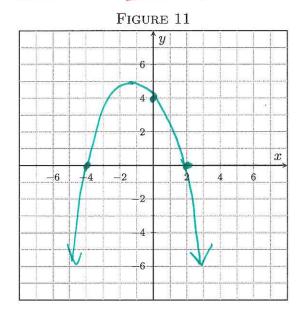
As x > 0, y > -0

Max turning

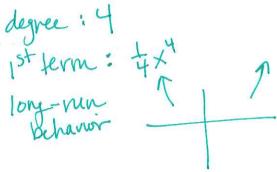
posits: 1

horizontal intempts Zeros: 2, multiplicity 1





Example 3. Graph the polynomial function defined by $f(x) = \frac{1}{4}(x+1)^2(x+2)(x-5)$ by finding the following: the degree of the polynomial, the long run behavior, the maximum number of turning points, the horizontal and vertical intercepts, and the zeros and their multiplicity.

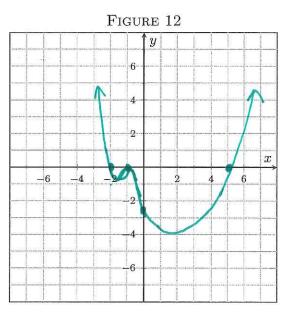


As x >0, y >0
As x >0, y >0

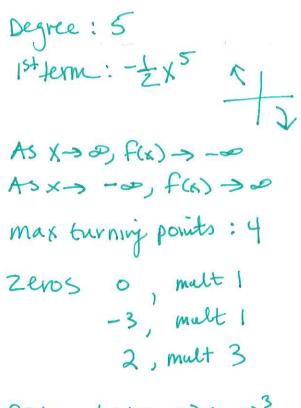
maximum turning points: 3

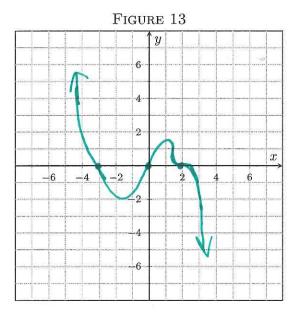
y-int:
$$f(0) = \frac{1}{4}(0+1)^2(0+2)(0-5)$$

= $\frac{1}{4}(1)(2)(-5)$
= $-\frac{5}{2}$



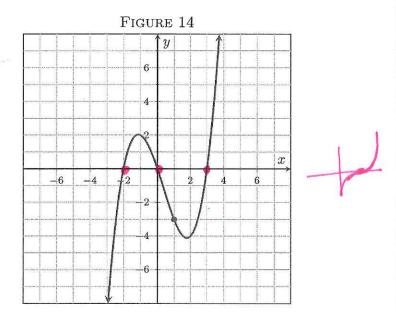
Example 4. Graph the polynomial function defined by $f(x) = -\frac{1}{2}x(x+3)(x-2)^3$ by finding the following: the degree of the polynomial, the long run behavior, the maximum number of turning points, the horizontal and vertical intercepts, and the zeros and their multiplicity.





Example 5. Find a possible formula for the polynomial function graphed in Figure 14 using the zeros and their multiplicities.

Zeros:
$$-2$$
, mult 1
 0 , mult 1
 3 , mult 1
 $(x+2)(x+0)(x-3)$
 $f(x) = kx(x+2)(x-3)$
 $use (1,-3)$
 $-3 = k(1)(1+2)(1-3)$
 $-3 = k(1\cdot3\cdot-2)$
 $-3 = k(-6)$
 $\frac{1}{2} = k$
 $f(x) = \frac{1}{2}x(x+2)(x-3)$



Example 6. Find a possible formula for the polynomial function graphed in Figure 15 using the zeros and their multiplicities.

Zeros: -3, mult 2
0, mult 2
3, mult 1

$$f(x) = k(x+3)^{2}(x-0)^{2}(x-3)$$

$$= kx^{2}(x+3)^{2}(x-3)$$
use (1, 2)

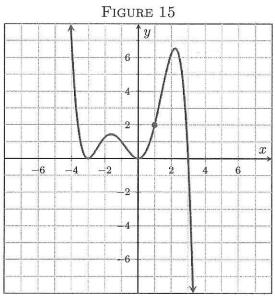
$$2 = k(1)^{2}(1+3)^{2}(1-3)$$

$$2 = k(1\cdot16\cdot-2)$$

$$2 = k(-32)$$

$$-\frac{1}{16} = k$$

$$f(x) = -\frac{1}{16}x^{2}(x+3)^{2}(x-3)$$



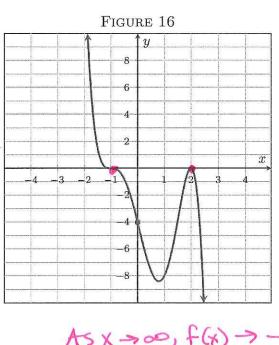
AS X > 0, f(x) > -0
AS X > -0, f(x) > 0

Example 7. Find a possible formula for the polynomial function graphed in Figure 16 using the zeros and their multiplicities.

Zeros: -1, mult 3
2, mult 2
degree is 5 (or more)

$$f(x) = K(x+1)(x-2)$$

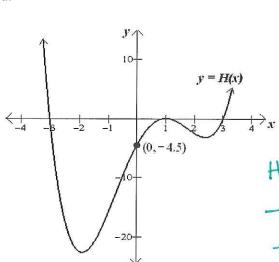
 $-4 = K(0+1)(0-2)^2$
 $-4 = K(1)(4)$
 $-4 = K \cdot 4$
 $-1 = K$
 $f(x) = -(x+1)(x-2)^2$



AS X >00, F(X) > -00
AS X >00, F(X) >0

1. Find a possible formula for the functions graphed below. (Check your answer by graphing on the calculator.)

a.

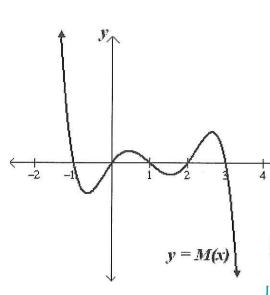


$$H(x) = K(X+3)(X-1)^{2}(X-3)$$

 $-4.5_{3}^{2} = K(0+3)(0-1)^{2}(0-3)$
 $-4.5 = K(3)(1X-3)$
 $-4.5 = K(-9)$
 $\frac{1}{2} = K$

$$H(x) = \frac{1}{2}(x+3)(x-1)^{2}(x-3)$$

b. Find a possible formula given that (-2, 960) is a point on this graph.



M(x) = k(x+1)(x-0)(x-1)(x-2)(x-3)= kx(x+1)(x-1)(x-2)(x-3)

M(x) = -8(x+1)(x-1)(x-2)(x-3) 960 = k(-2)(-2+1)(-2-1)(-2-2)(-2-3) $960 = k(-2 \cdot -1 \cdot -3 \cdot -4 \cdot -5)$ Cara Lee 960 = k(-120)Page 1

- 2. Given the following information about a polynomial function, find a possible formula (check your answers by graphing on the calculator).
- a. f is third degree and f (6) = -36. The zeros of f are 0, 5, and 8.

$$f(x) = k \times (x-5)(x-8)$$

$$-3b = k(b)(b-5)(b-8)$$

$$-3b = k(-12)$$

$$-3b = k(-12)$$

$$3 = k$$

$$f(x) = 3x(x-5)(x-8)$$

b. g is fifth degree and g(2) = 144. The zeros of g are -2, 1, 4, and -1 (multiplicity 2).

$$g(x) = k(x+2)(x-1)(x-4)(x+1)^{2}$$

$$144 = k(2+2)(2-1)(2-4)(2+1)^{2}$$

$$144 = k(4\cdot1\cdot-2\cdot3)$$

$$144 = k(-24)$$

$$-6 = k$$

$$g(x) = -6(x+2)(x-1)(x-4)(x+1)^{2}$$