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Math 111
Basic Function Library

You will want to know these basic functions and their shapes / behavior. They will be important in
recognizing the type of functions you might see graphically, in an equation or expression, as well as
graph transformations.

Quickly sketch a graph of the basic function: Pe lJ nomye

fx)=x f(x)=x’ fx)=x fx)=x"
Fx)=x f(x)=x" where n is odd. J(x)=x" where m is even.
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Redicalo or Roots
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flz)= i" where # is odd. JF@= % where m is even. f(x)=c where c is a constant.
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SECTION 3.1: POLYNOMIAL FUNCTIONS

~Math 111 Lecture Notes
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A power function is of the form f(x) = a,z™ where a,, is a real number and n is a non-negative

integer.

v

A polynomial function is of the form

f(.’L') = CL”,’L‘T?' + C[nnflﬂ’,’nil fpeosvia A Bty

where a,,, G,_1,...,01,ap are real numbers and n is a non-negative integer.

The leading term is a,z™. This determines the long-run behavior of the function.

The degree of the polynomial 15@,) h\ﬂ\(\ﬂé)j‘ po\,ﬁ/\/”
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Basic Power Functions
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Basic Power Functions (close up)

FiGguRrE 5. Even Powers

FIGURE 6. Odd Powers
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Math 111 Lecture Notes

Section 3.1

General Polynomial Functions
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A polynomial function f has a real zero r if and only if (z — ) is a factor of f(z).

(=D

If r is a zero of even multiplicity, then the factor (z — r) occurs an even number of times.
The graph then looks like the graph of an even power function at that zero. Hence the function

e

“bounces” there. bo w3 LN
(%~ 2) l/ ( % oY (s *3“52" \_,._wy,

If r is a zero of odd multiplicity, then the factor (z — r) occurs an odd number of times. The

graph then looks like the graph of an odd power function at that zero. Hence, if (x — r) occurs
once, the function passes “straight through” at that zero and if (z — r) occurs any other, odd
number of time, the function “flattens” there. __,__v\—rf—* CK«- }’3 __.JJ
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‘Example 1. Let f(z) =4z(z — 7)?(xz + 1)°(z + 2)3. Determine the following: - :

(a) the zeros and their respective multiplicities
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Example 2. Graph the polynomial function defined by f(z) = —3(z — 2)(z + 4) by finding the

following: the degree of the polynomial, the long run behavior, the maximum number of turning
points, the horizontal and vertical intercepts, and the zeros and their multiplicity.
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Math 111 Lecture Notes

Section 3.1

‘Example 3. Graph the polynomial function defined by f(z) = 1(z+1)*(z +2)(z — 5) by finding
the following: the degree of the polynomial, the long run behavior, the maximum number of turning

points, the horizontal and vertical intercepts, and the zeros and their multiplicity.
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Math 111 Lecture Notes Section 3.1

‘Example 4. Graph the polynomial function defined by f(z) = —1z(z + 3)(z — 2)® by finding the
following: the degree of the polynomial, the long run behavior, the maximum number of turning
points, the horizontal and vertical intercepts, and the zeros and their multiplicity.
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Math 111 Lecture Notes

Section 3.1

Example 5‘;:'Findg possible formulg}’or the polynomial function graphed in Figure 14 using the
zeros and their multiplicities.
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-3 = k(OY1+23(-3)
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Math 111 Lecture Notes Section 3.1

- Example 6. Find a possible formula for the polynomial function graphed in Figure 15 using the

zeros and their multiplicities.

FIGURE 15
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Math 111 Lecture Notes Section 3.1

= Example 7. Find a possible formula forthe polynomial function graphed in-Figure 16 using the
zeros and their multiplicities.
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Math 111 Section 3.1 Practice Polynomial Functions

1. Find a possible formula for the functions graphed below. (Check your answer by graphing on the
calculator.)
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rried = e (60 (A-3)
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-45 =k (-9)

L
g =k

AR = 200X -2D

b. Find a possible formula given that (-2, 960) is a point on this graph.
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2. Given the following information about a polynomial function, find a possible formula (check your - -~ -~ - %

answers by graphing on the calculator).

a. f 'Lshrd degree and f (6) = - 36.

The zeros of f are 0, 5, and 8.
Fiy= kX (-5 D
-3 = k (9(b-v D5
-3 = {Ge]"2)
-3L =k (-12)

3=k
PO = 25 (X=X )

b. g 1gree and g(2) = 144.

The zeros of g are -2, 1,4, and -1 (multiplicity 2).

4063 = K (U (e (e
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