Math 111 - Thurs, 4/21
a's on 1.5
Checkpoint 4 (on 1.5)
Q's on 4.1
New material: 4.2 + Supplement
inverse matching activity
No class on Tuesday (Inservice Day until 4pm)
1st Boss/midterm on Thursday (1.1-1.5, 4.1, 4.2)
8 am - 10:20 - You may leave when finished
Part 1-No Calculator
Part 2 - Graphing Calculator Needed
Review problems in the book
Review problems in the book Review packet - solutions will be posted by Friday

1.5 Questions - completing the square (\frac{1}{2}b) or 2

$$y = x^{2} + 4x - 1$$

$$= x^{2} + 4x + 2^{2} - 1 - 4$$

$$= (x+2)^{2} - 5$$

$$y = 3x^{2} - 9x + 1 (3)^{2}$$

$$= 3(x^{2} - 3x + (3)^{2}) + 1 - 3x^{2}$$

$$= 3(x - 3)^{2} + 1 - 2x^{2}$$

$$= 3(x - 3)^{2} + 4 - 27$$

$$= 3(x - 3)^{2} - 23$$

$$= 3(x - 3)^{2} - 23$$

Math 111 Lecture Notes

SECTION 4.2: INVERSE FUNCTIONS

Example 1. Temperature in degrees Fahrenheit, F, can be written as a function of temperature in degrees Celsius, C. This relationship is given by $F = g(C) = \frac{9}{5}C + 32$.

(a) Find and interpret g(100).

$$g(108) = \frac{9}{8}(100) + 32$$

$$= 180 + 32$$

$$= 212° F$$

to 212°F. (boiling

(b) Solve and interpret the solution to g(C) = 32.

$$g(c) = \frac{9}{5}C + 32$$

$$\frac{32}{5}C + \frac{32}{5}C$$

$$\frac{32}{5}C + \frac{32}{5}C$$

(c) Solve the equation $F = \frac{9}{5}C + 32$ for C.

$$F = \frac{9}{5}c + 32$$

 $\frac{5}{9}(F - 32) = \frac{9}{5}c(\frac{9}{9})$
 $\frac{5}{9}(F - 32) = C$

occis equivalent

to 32°F (Freezing
point of
water)

$$C = \frac{5}{9}(F-32)$$
 Inverse
function

 $F = \frac{9}{5}C + 32$

April input

A function f is said to be **one-to-one** if for every y-value in the range of f there is exactly one x-value in the domain of f.

A function must be one-to-one in order to have an inverse. The inverse function of f reverses the process of the original function. In other words, the input and output switch roles. The original function is given by y = f(x). The inverse function is given by $x = f^{-1}(y)$. If we want to graph both of these functions in the (x, y)-plane, then we use $y = f^{-1}(x)$.

The inverse function of f is denoted by f^{-1} . It is important to note that this notation is not denoting a reciprocal. That is, $f^{-1}(x) \neq \frac{1}{f(x)}$.

Example 2. Write the definition for $g^{-1}(F)$ for Example 1.

$$C = \frac{5}{9}(F-32)$$

 $g^{-1}(F) = \frac{5}{9}(F-32)$

Example 3. The function f defined by f(x) = 3x + 2 is one-to-one. Find its inverse. Then graph y = f(x)and $y = f^{-1}(x)$ in Figure 1. Include the graph of y = x also.

$$f(x)=3x+2$$

$$y = 3x + 2$$

$$x = 3y + 2$$

$$x = 3y + 2$$

$$x = -2$$

$$y = -2$$

$$y = -3x - 2$$

$$y = 3x + 2$$
 Switch x and y
 $x = 3y + 2$ Solve for y
 $-2 = 3y$

Instructor: A.E.Carv

Page 2 of 8

Example 4. To verify that two functions are inverses, we show that $f(f^{-1}(x)) = x$ and that $f^{-1}(f(x)) = x$. Do this for the previous example.

this for the previous example.

$$f(x)=3\times+2 \qquad f^{-1}(x) = \frac{1}{3}$$

$$= \frac{3(x-2)}{3} + 2$$

$$= x-2+2$$

$$= x-2+2$$

$$= x-2+3$$

$$= \frac{3x+2-2}{3}$$

$$= \frac{3x}{3}$$

Example 5. The function f defined by $f(x) = -\frac{2x}{x-1}$ is one-to-one. Find the inverse function. Confirm that the inverse function you found is correct by showing $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

$$y = -\frac{2x}{x-1} \quad \text{Switch} \quad x + y$$

$$(y-1) x = -\frac{2y}{y-1} \quad \text{Solve for } y$$

$$Xy - x = -2y$$

$$-xy$$

$$-x = -2y - xy$$

$$-x = -y(2+x)$$

$$\frac{x}{-1} = y(2+x)$$

$$\frac{x}{2+x} = y$$

put y's on the same side and factor it out

check: $f(f^{-1}(x)) = f(\frac{x}{2+x})$ $= -2(\frac{x}{2+4}) \cdot (\frac{2+x}{1})$ $(\frac{x}{2+x}) - 1 \cdot (\frac{2+x}{1})$

 $= \frac{-2x}{\left(\frac{x}{2+x}\right)\left(\frac{2+x}{1}\right) - \frac{1}{1}\left(\frac{2+x}{1}\right)}$ $= \frac{-2x}{x - 2 - x}$

 $= -\frac{1}{2}x$ = x

State the domain and range of each f and f^{-1} .

 $f^{-1}(x) = \frac{x}{x}$

Domain of $f: \{x \mid x \neq -2\}$ Range of $f: \{x \mid x \neq -2\}$ Range of $f: \{x \mid x \neq -2\}$

The domain of f is the range of f^{-1} . Similarly, the range of f is the domain of f^{-1} .

$$f^{-1}(f(x)) = f^{-1}\left(-\frac{2x}{x-1}\right)$$

$$= \frac{-2x}{x-1} \cdot (x-1)$$

$$(2 + \frac{-2x}{x-1}) \cdot (x-1)$$

$$=\frac{-2x}{2(x-1)+(-2x)(x-1)}$$

$$= \frac{-2x}{2x-2-2x}$$

$$=\frac{-2x}{-2}$$

The horizontal line test is a way of determining if a function is one-to-one. It states that if every horizontal line passes through a graph at most once, then the function is one-to-one.

In the same way that the vertical line test verifies if a graph represents a function, the horizontal line test verifies if the graph of a function is one-to-one (and thus invertible).

Example 6. Graph y = f(x) for $f(x) = x^2$ in Figure 2. Then graph y = g(x) for $g(x) = x^2, x \ge 0$ in Figure 3. Is either function invertible? Why or why not?

Figure 2. Graph of $y \neq f(x)$ y=x2 -4 $f(x) = x^2$ The inverse is not a function so f(x)=x2 is not invertible It doesn't pass the horizontal live test

f(x)=x², x =0 is one-to-one. It passes the honzontal line test so it is invertible

$$f_{-1}(x) = 1x^{-1} \times 20$$

Example 7. The function g defined by $g(x) = \sqrt[3]{x+8}$ is one-to-one. Find the inverse function and confirm that it is the inverse by showing $g(g^{-1}(x)) = x$ and $g^{-1}(g(x)) = x$. In Figure 4, use transformations to sketch $y = g(x), y = g^{-1}(x)$ and y = x.

$$g(x) = \sqrt[3]{x+8}$$

 $y = \sqrt[3]{x+8}$ Switch $x + y$
 $(x)^{3} = (\sqrt[3]{y+8})^{3}$ Solve for y
 $x^{3} = y + 8$
 $x^{3} = y + 8$
 $y = x^{3} - 8$
 $y = x^{3} - 8$
 $y = x^{3} - 8$

$$g(g^{-1}(x)) = g(x^{3}-8)$$

$$= \sqrt[3]{(x^{3}-8')+8'}$$

$$= \sqrt[3]{x^{3}}$$

$$= x$$

$$g^{-1}(g(x)) = \sqrt[3]{(\sqrt[3]{x+8})^{3}-8}$$

$$= x + 8 - 8$$

Instructor: A.E.Cary

Example 8. Use the functions f and g given in Table 1 to determine the following.

X	5	4	2	-1		
f(x)	-2	-1	0	1	2	

		Tab	le 1		r
x	-2	-1	0	1	2
f(x)	5	4	2	-1	1
g(x)	7	2	0	-2	9

X	7	2	0	-2	9
g-(x)	-2	-1	0	J	2

(a)
$$g^{-1}(-2) = 1$$
 (b) $f^{-1}(2) = 0$ (c) $f^{-1}(0) = 0$ (d) $f(g^{-1}(0)) = 0$

(b)
$$f^{-1}(2) = \bigcirc$$

(c)
$$f^{-1}(0)$$
 indepred

$$f(g^{-1}(0)) = f(o)$$

Example 9. Graph the inverse function of f in Figure 5. Then use your sketch to find the values of f^{-1} below.

Figure 5

(a)
$$f^{-1}(-4) = -4$$

(c)
$$f^{-1}(0) = -2$$

(e)
$$f^{-1}(4) = 2$$

(b)
$$f^{-1}(-2) = -3$$

(d)
$$f^{-1}(2) = \bigcirc$$

Example 10. The diameter of a Window-Pane oyster, d (in mm), as a function of its weight, w (in grams) can be modeled by

$$d = f(w) = 25 + 20w^{1/3}$$

Find the inverse function by solving $d = 25 + 20w^{1/3}$ for w. Write this inverse function as g(d).

$$d = 25 + 20 \%$$
 Solve for w
$$\frac{d-25}{20} = \frac{20 \% }{20}$$

$$(\frac{d-25}{20})^{3} = (3 \%)^{3}$$

$$(\frac{d-25}{20})^{2} = W$$

$$W = g(d) = (d-25)^{3}$$

Math 111 Inverse Matching Activity Section 4.2

2. Write down your functions.

Your Function

The Inverse Function

$$f(x) = 2x^3 + 3$$

3. Verify that your functions are inverses of each other.

$$f(g(x)) = f(\sqrt[3]{\frac{x-3}{2}}) \qquad g(f(x)) = g(2x^3 + 3)$$

$$= Z(\sqrt[3]{\frac{x-3}{2}}) + 3$$

$$= X - 3 + 3$$

$$= X$$

4. Use transformations to graph both functions and the line y=x on the same grid.

V