Math III - Tues, 5/10

Please turn in Bonus

Questions on 4.4

Finish page 6 of the 4.4 packet + 4.4

Section 4.5

Checkpoint 6 on Thurs (4.3, 4.4)

Project due on Thursday

Mission 3 (Individual) Handed out

multicultural Night Tonight 4:30-7:30

in the Great Hall

math 30 Printing - Need 4 helpers to work

with high school students on a

Saturday (may 14th or Jure 4th)

99m-100n [Gift card + bonus points]

$$\left(\frac{1}{2}\right)^2 = 16$$

$$\sqrt[3]{27} = 27^{1/3}$$

log > common log base 10

roots are fractional

$$36. lne^3 = 3$$

Math 111 Lecture Notes

Section 4.5: Properties of Logarithms

Example 1. Calculate the following:

(a)
$$\log_5(1) = 0$$

(c)
$$\log_2(1) = \bigcirc$$

(e)
$$\log(1) = 0$$

(g)
$$\ln(1) = \bigcirc$$

cause because
$$5^{\circ}=1$$
 $2^{\circ}=1$

(b)
$$\log_5(5) =$$

(d)
$$\log_2(2) = 1$$

(f)
$$\log(10) =$$

(f)
$$\log(10) = 1$$
 (h) $\ln(e) = 1$

be cause

For any positive real number $a, a \neq 1$, it holds that

$$\log_a(1) = 0$$

•
$$\log_a(a) = 1$$

Example 2. We have said that the functions defined by $g(x) = \log_2(x)$ and $f(x) = 2^x$ are inverse functions. Find f(g(x)) and g(f(x)). Since f and g are inverses, what should these be equivalent to?

$$f(g(x)) = f(\log_2 x)$$

$$= 2^{\log_2 x}$$

$$= x$$

$$g(f(x)) = g(2^{x})$$

$$= log_{2} 2^{x}$$

$$= x$$

For any positive real numbers x and a, $a \neq 1$, it holds that

$$\bullet \ \log_a\left(a^x\right) = x$$

$$\bullet \ a^{\log_a(x)} = x$$

Example 3. Compare the following expressions:

$$\log_2(8) + \log_2(4)$$

VS.

$$\log_2(32)$$

Example 4. Compare the following expressions:

$$\log_3(81) - \log_3(3)$$

$$+ - \mid$$

VS.

$$\log_3(27)$$

Example 5. Compare the following expressions:

$$4\log(10)$$

 $\log(10000)$

400000

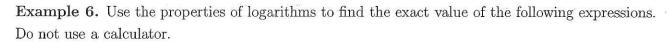
VS.

For any positive real numbers M, N, and a, $a \neq 1$, it holds that

•
$$\log_a(MN) = \log_a(M) + \log_a(N)$$

•
$$\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$$

•
$$\log_a(M^r) = r \log_a(M)$$



(a)
$$\log_4(4^{-5}) = -5$$

property 3

(d)
$$2^{\log_2(15)} = 15$$

property 4

(b)
$$\log_{6}(9) + \log_{6}(4)$$

= $\log_{6}(36)$
= 2 pwpwty 5

(e)
$$\log(250) - \log(25)$$

= $\log(\frac{250}{25})$
= $\log(10)$
= $\log(10)$

(c)
$$e^{\ln(7)}$$
 property 4

(f)
$$5^{\log_5(6) + \log_5(7)}$$

= $5^{\log_5(42)}$ pwp 5
= 42 prop 4

Example 7. Write each expression as a sum and/or difference of logarithms. Express powers as factors.

(a)
$$\log \left(\frac{1}{x-3}\right), \frac{x>3}{x>3}$$
 property b

= $\log 1 - \log (x-3)$

= $0 - \log (x-3)$ domain

= $-\log (x-3)$ $x-3>0$
+3 +3
 $x = 73$

(b)
$$\ln (x^4 \sqrt{1+x^2})$$

= $\ln x^4 + \ln \sqrt{1+x^2}$ prop 5
= $4 \ln x + \ln (1+x^2)^2$ prop 7
= $4 \ln x + \frac{1}{2} \ln (1+x^2)$

(c)
$$\log_5 \left(\frac{\sqrt[3]{x^2 + 1}}{x^2 - 1} \right)$$

= $\log_5 \sqrt[3]{x^2 + 1}$ - $\log_5 (x^2 - 1)$ prop b
= $\log_5 (x^2 + 1)^{1/3} - \log_5 (x + 1)(x - 1)$
= $\frac{1}{3} \log_5 (x^2 + 1) - \log_5 (x + 1) + \log_5 (x - 1)$ prop 5
= $\frac{1}{3} \log_5 (x^2 + 1) - \log_5 (x + 1) - \log_5 (x - 1)$

Example 8. Write each expression as a single logarithm.

(a)
$$\log_2\left(\frac{x-3}{x+5}\right) + \log_2\left(\frac{3x+15}{x-4}\right)$$

property 5

$$= log_2\left(\frac{x-3}{x+5} \cdot \frac{3x+15}{x-4}\right)$$

=
$$log_2\left(\frac{x-3}{x+5}, \frac{3(x+5)}{x-4}\right)$$

$$= log_2(\frac{3(x-3)}{x-4})$$

(b)
$$\log_4\left(\frac{5}{x}\right) - \log_4\left(\frac{x+2}{x^3}\right)$$
 property 6

$$= \log_4\left(\frac{5}{x^3}\right) \text{ mult}$$

$$= \log_4\left(\frac{5}{x^2} \cdot \frac{x^3}{x+2}\right) \text{ mult}$$
by the probability approach

$$= log_4\left(\frac{5\chi^2}{\chi+2}\right)$$

(c)
$$\log(x^2 + 3x + 2) - 2\log(x + 1)$$
 pwperty 7

$$= \log \left(\frac{x^2 + 3x + 2}{(x+1)^2} \right)$$

$$= \log \left(\frac{(x+1)(x+2)}{(x+1)^2} \right)$$

$$=\log\left(\frac{x+2}{x+1}\right)$$

(d)
$$\ln(x^2-9) + \ln\left(\frac{x}{x-3}\right) - \ln\left(\frac{x+3}{x}\right)$$

$$\ln\left((x+3)(x-3)\right) + \ln\left(\frac{x}{x-3}\right) - \ln\left(\frac{x+3}{x}\right) \quad \text{prop 5}$$

$$\ln\left(\frac{x(x+3)(x-3)}{x-3}\right) - \ln\left(\frac{x+3}{x}\right)$$

$$\ln\left(\frac{x(x+3)(x-3)}{x-3}\right) - \ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right) - \ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+3}{x-3}\right)$$

$$\ln\left(\frac{x+$$

Change-of-Base Formula If a, b, and M are positive real numbers, $a \neq 1$ and $b \neq 1$, then

$$\log_a(M) = \frac{\log_b(M)}{\log_b(a)}$$

In practice, we primarily use one of the following forms of this formula:

$$\log_a(M) = \frac{\log(M)}{\log(a)}$$
 or $\log_a(M) = \frac{\ln(M)}{\ln(a)}$

Example 9. Use the Change-of-Base formula to write the following logarithmic expressions in terms of the natural logarithmic function or common logarithmic function. Then approximate each in your calculator.

(a)
$$\log_4(15) = \frac{\log 15}{\log 4} \approx 1.953$$
 (b) $\log_5(\frac{1}{7}) = \frac{\log(\frac{1}{10})}{\log 5} \approx -1.209$
 $\log_4(15) = \frac{\log 15}{\log 4} \approx 1.953$ or $\frac{\ln(\frac{1}{10})}{\ln 4} \approx -1.209$

- **3.** A population decreases at a rate of 13.2% per 5 years. Find the approximate value for the following:
 - a. 1-year factor of decay and 1-year rate of decay.
 - b. 5-year factor of decay and 5-year rate of decay.
 - c. 10-year factor of decay and 10-year rate of decay.

SUPPLEMENTAL PROBLEMS FOR §4.4

EXAMPLE: The graph of $f(x) = \log_a(x)$ is given in Figure 17. Find a. (Note that the points (1,0) and (9,2) are on the graph of f.)

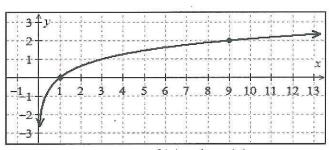


Figure 17: $f(x) = \log_a(x)$

1093

 $0 = log_a l$ $a^0 = l \leftarrow (o, i) \text{ is on even}$ $log_a q \text{ log graph}$

a = 109a7 $a^2 = 9$ a = 2

Solution:

Since the function has form $f(x) = \log_a(x)$ and since the point (9, 2) is on the graph, we know that f(9) = 2. Thus,

$$f(9) = 2$$

$$\Rightarrow \log_a(9) = 2$$
 (since $f(9) = \log_a(9)$)

$$\Rightarrow$$
 $a^2 = 9$ (translate the logarithmic statement into an exponential one)

$$\Rightarrow$$
 $a = 3$ (take the positive square root of 9 because bases of logs are positive)

Notice that we didn't attempt to use (1,0), the other obvious point on the graph of $f(x) = \log_a(x)$, to find a. Why not? (The point (1,0) is on the graph of *all* functions of the form $f(x) = \log_a(x)$ so it doesn't provide information that will help us find the particular function graphed here.)