Math 60, Sections 2.1-2.2 Notes and Practice

Name: Solutions

Section 2.1 Variables and Evaluating Expressions

An expression is a combination of Vanables, numbers and operations.

1. Make up some examples of algebraic expressions:

To evaluate an expression, we replace the variable(s) with their values and calculate the result.

2. Evaluate each expression for x = -4

a.
$$22x = 22(-4)$$

= -88

c.
$$\frac{|x-16|}{x} = \frac{|-4-1b|}{-4}$$

e. $x^2 = \frac{|20|}{-4}$
= $(-4)^2 = -5$

b.
$$-5(x-7) = -5(-4-7)$$

= -5(-11)

d.
$$\sqrt{-2x+1}-5 = \sqrt{-2(-4)} + 1 - 5$$

$$= \sqrt{8+1} - 5$$

$$= \sqrt{9-5}$$

$$= -(-4)^2 = 3-5$$

3. Evaluate each expression for x = 7 and y = 5

a.
$$4(x-y) = 4(7-5)$$

= $4(2)$
= 8

$$\frac{c.\frac{40}{y} - \frac{7}{x}}{or} = \frac{40}{5} - \frac{7}{7}$$

$$\frac{40.7}{or} - \frac{7.5}{7.5} = 8 - 1$$

$$\frac{280}{35} - \frac{35}{35} = 7$$
Cara Lee
$$\frac{245}{35}$$

b.
$$2xy+3 = 2(7)(5) + 3$$

= $70+3$
= 73

d.
$$\frac{3x+4y-1}{4y} = \frac{3(7)+4(5)-1}{4(5)}$$

$$= \frac{2(1+20)-1}{20}$$

$$= \frac{40}{20} = 2$$
Page 1

Evaluating Geometric Formulas

Memorize these 8 formulas and their corresponding units

	Rectangle	Triangle	Circle
Perimeter Units:	P = l + w + l + w	P = a+b+c	Circumference
	P= 2R + 2W		C = 2Tr
			diameter = 2r
Area Units:	$A = l \cdot \omega$	A = 12 b.h	A=Tr2
sq ft		b	

	Rectangular Solid ─ 🖁 🛚 💃	Right Cylinder
Volume		C7h
Units:	V= l.w.h	$V = \pi r^2 h$
cu. ft cubic ft		V=IIIN

- 4. Evaluate each geometric formula using the information given. Include units in your answer.
 - a. Find the area of a triangular sail that has a height of 15 feet and a width of 8 feet.

iangular sail that has a height of 15 feet and a width of 8 f

$$A = \frac{1}{2} \cdot b \cdot h$$
The area is
$$= \frac{1}{2} (8)(15)$$

$$= \frac{1}{$$

b. Find the circumference and area of a 16-inch diameter pizza, which sells for \$19.00 at Pizzicato.

i. The pizza's circumference, in terms of π , is

d=16 r=8inches

In Webwork: 16 pi in

= 16 TT inches In W ii. The pizza's circumference, rounded to the hundredth's place is:

56,27 in

iii. The pizza's area, in terms of π , is

$$A = \pi r^{2}$$

$$= \pi \cdot 8^{2}$$

$$= 64\pi \text{ in}^{2}$$

In webwork: 64pi in12

iv. The pizza's area, rounded to the hundredth's place is:

201.06 in 12

c. Find the volume of a can that has a diameter of 7 cm and a height of 11 cm.

i. The can's volume, in terms of π , is

$$V = \Pi r^2 h$$

= $\Pi (3.5)^2 \cdot 11$
= $\Pi \cdot 12.25(11) = 134.75 \text{ TT cm}^3$

r=3.5 CM

ii. The can's volume, rounded to the hundredth's place is:

5. Evaluating other formulas.

To convert a temperature measured in degrees Fahrenheit, F, to degrees Celsius, C, we use the formula $C = \frac{5}{9}(F-32)$. Convert the room temperature of $68^{\circ}F$ to Celsius. Write your answer in a complete sentence including units.

$$C = \frac{5}{9}(68 - 32)$$

$$= \frac{5}{9}(36)^{4}$$

$$= 20^{\circ}C$$

Room temperature is 20°C.

Section 2.2 Equations and Inequalities as True/False Statements

An **equation** is a statement that two expressions are equal. An **inequality** compares two expressions with an inequality symbol.

6. Make up some examples of equations and inequalities. What is the difference between an expression and an equation?

equations

$$X-1 = 5 \times X$$

$$X-1 = 5 \times Y$$

$$X=3x-2y+4$$

 $3x \neq 2x + 1$ $2 \geq 7 + 1 + x$ $4y \leq 3y$

Equations and inequalities can be very complex with multiple variables and operations. In Math 60 we will study **linear equations and inequalities**, which have one variable and cannot have any exponents on the variable (other than 1). There cannot be any variables in a square root or denominator.

7. Make up some examples of <u>linear</u> equations and inequalities.

8. Make up some examples of equations and inequalities that are not linear.

Checking Possible Solutions

A solution to an equation or inequality is a value that makes the statement true.

9. Check each equation or inequality to see whether the given number is a solution.

a. Is 5 a solution to
$$y+10=15$$
?

$$5+10=15$$

$$15=15$$

$$15=15$$
c. Is -3 a solution to $2x+7 \le 15$?
$$2(-3)+7 \le 15$$

$$-6+7 \le 15$$

$$1 \le 15$$
a Lee -3 is a solution

b. Is
$$-4a$$
 solution to $3x = 12$?

 $3(-4) \stackrel{?}{=} 12$
 $-12 \stackrel{?}{=} 12$
 -4 is not a Solution.

15?

d. Is $-2a$ solution to $\frac{1}{2}r - 5 < 2(r - 1)$?

 $\frac{1}{2}(-2) - 5 \stackrel{?}{=} 2(-2 - 1)$
 $\frac{1}{2}(-2) - 5 \stackrel{?}{=} 2(-3)$
 $\frac{1}{2}(-3) - \frac{1}{2}(-3)$
 $\frac{1}{2}(-3) - \frac{1}{2}(-3)$

More Practice

- 10. Check each equation or inequality to see whether the given number is a solution.
 - a. Is 3 a solution to 2(t+5)=16? 2 (3+5)=16 2(8)=16 16=16

3 is a solution

c. Is -3 a solution to $5t+1 \le -7-t$?

$$5(-3)+1\stackrel{?}{\leq}-7-(-3)$$

 $-15+1\stackrel{?}{\leq}-7+3$
 $-14\stackrel{?}{\leq}-4$ T
 -3 is a solution

- 11. Evaluate each expression for a = 4 and b = -6
 - a. $a + 4b^2$ = 4+4(-6) = 4+4 (36) = 4 + 144 = 148c. $\frac{1}{2}a - \frac{1}{3}b$ = 2 +2 =4

b. Is -2 a solution to $-3x + 5 \ge 1$?

$$-3(-2)+5\stackrel{?}{>}1$$
 $6+5\stackrel{?}{>}1$
 $11\stackrel{?}{>}1$

d. Is -6a solution to y+5>1?

- le is not a solution

b.
$$5ab-8a = 5(4)(-6)-8(4)$$

= $20(-6)-32$
= $-120-32$
= -152

d.
$$\frac{2a-3b+10}{ab} = \frac{2(4)-3(-6)+10}{4(-6)}$$
$$= \frac{8+18+10}{-24}$$
$$= \frac{36}{-24} = \frac{-3}{2}$$

- 12. Use a geometric formula and the information given. Write your answer in a complete sentence including units.
 - a. A garden bed has a length of 12 feet and a width of 4 feet. How much material would you need to make a border?

permeter

12 Ft
$$P = 2l + 2\omega$$

= $2(12) + 2(4)$
= $24 + 8$

we would need 32 feet = 32 feet of border material.

c. A paper cone for drinking water has a base diameter of 2.5 inches and a height of 4 inches. How much water can the cone hold? 1 = 2.5

Write the answer in terms of
$$\pi$$
:

$$V = \frac{1}{3} \pi r^{2} h$$

$$= \frac{1}{3} \pi (1.25)^{2} \cdot 4$$

$$= \frac{1}{3} \cdot \frac{1}{4} (1.25)^{2} \cdot \pi$$

$$= \frac{1}{3} \cdot \frac{4}{1} (1.25)^{2} \cdot T$$

$$= \frac{1}{3} (1.5625) \cdot T$$
Write the answer rounded to the nearest hundredths place:

r= 1.25 in

- 13. When a plant was purchased, it was 3.2 inches tall and it grows at a rate of 0.2 inches per day. The expression 3.2 + 0.2d represents the height of the plant after d days.
 - a. How tall is the plant after 10 days?

$$3.2 + .2(10)$$
 in $= 3.2 + 2$ $= 5.2$ inches

b. The equation 3.2 + 0.2d = 10 describes the number of days it takes for the plant to be 10 inches tall. Is 22 a solution for this equation?

$$3.2 + 12(22) = 10$$

 $3.2 + 4.4 = 10$
 $7.6 \neq 10$

c. Challenge: Can you figure out how many days it will take the plant to reach 10 inches in Trial terror: We will learn how to solve these in height?

$$3.2 + .2(25) = 8.2$$

 $3.2 + .2(30) = 9.2$

3.2 + 12(38) = 10.8