Overview

- Discrete vs. Continuous Random Variables
- Probability Distribution
- Calculating Expected Value
- Calculating Variance and Standard Deviation

The lottery should be played for entertainment only and not investment purposes!

On the back of this ticket it says:

Overall odds of winning: 1 in 3.84

Prize Payout: 64.00%

Random Variables:

A random variable is a variable whose value is determined by the outcome of a random event.

Example: Winnings from a lottery ticket

Discrete random variable:

Only certain values are possible (finite number)

Continuous random variable:

Can be any value range (0,\$11,000)

long-nun amount we would expect to win
per triket. (expected winnings)

Probability distribution: The collection of all possible values and the probabilities that they will occur. For a discrete random variable these can be listed in a table.

Image Source: http://www.oregonlottery.org/

Discrete Random Variables

Example 1. Making a Probability Model

280,000 = 3 640,000 oregonlottery.org/games/scratch-

Here is the prize chart for the same lottery ticket. http://www.oregonlottery.org/games/scratch-its/details/1115

Win	No. of Wins		Prize		Odds	Total No. of Prizes		Total of Prizes
S11,000	1	S	11,000	1:	280,000.00	(3)	\$	33,000
\$500	1	\$	500	1:	420,000.00	(2)	\$	1,000
\$500 (\$50 x 10)	10	\$	500	1:	280,000.00	(3/10	\$	1,500
\$500 (\$250°D*)	1	\$	500	1:	168,000.00	5	\$	2,500
\$250	1	\$	250	1:	42,000.00	(20)	\$	5,000
\$100	1	\$	100	1:	84,000.00	10	\$	1,000
\$100 (\$10 + \$20x2 + \$50)	4	S	100	1:	56,000.00	/ 15	\$	1,500
\$100 (\$10x10)	10	S	100	1:	56,000.00	15	\$	1,500
100 (\$50*D*)	1	5	100	1:	28,000.00	30	5	3,000
\$50	1	\$	50	1:	4,200.00	[200]	5	10,000
\$50 (\$5x10)	10	S	50	1:	2,333.33	360	5	18,000
\$50 (\$5x2 + \$10x4)	6	5	50	1:	2,736.16	307	5	15,350
\$30	1	\$	30	1:	1,680.00	500	\$	15,000
\$30 (\$2x5 + \$5x4)	9	\$	30	1:	982.46	855	\$	25,650
\$30 (\$5 + \$10 + \$15)	3	S	30	1:	982.46	855	\$	25,650
\$30 (\$15"D")	1	\$	30	1:	600.00	1,400	\$	42,000
\$15	1	\$	15	1:	400.00	2,100	\$	31,500
\$15 (\$5 x 3)	3	S	15	1:	200.00	4,200	5	63,000
\$10	1	S	10	1:	400.00	2,100	\$	21,000
\$10 (\$5°0")	1	S	10	1:	133.33	6,300	S	63,000
\$10 (\$2 x 5)	5	5	10	1:	100.00	8,400	S	84,000
\$5	1	S	5	1:	26.67	31,500	\$	157,500
\$4 (\$2"D")		S	4	1:	12.50	67,200	\$-	268,800
\$2	1	S	2	1:	9.09	92,400	S	184,800
TOTAL		:#Reseasessessessesses		1:	3.84	218,780	\$	1,075,250

Let's make a probability distribution model for the winnings.

840,000 - 218,780 = 621,220

													-18
Winnings X	\$11,000	\$500	\$250	\$100	\$50	\$30	\$15	\$10	\$5	\$4	\$2	\$0.	
Probability $P(X = x)$	3 840,000	840,00	840,000		867	3610	840'an	840,000	31,500	840000 61200	92,40		10,00

What are the expected winnings?
$$= $11,000 \left(\frac{3}{840,000}\right) + \frac{5}{840,000} + \dots $0 \left(\frac{621,220}{840,000}\right)$$

$$= $1,075,250 = $1.28 \text{ expected winnings}$$

$$= $1,28 - 2 = -$1.72$$

Expected Value:
$$\mu = E(X) = \sum_{x} x \cdot P(x)$$

Example 2. Find the Expected Value and Standard Deviation of a Random Variable

A coffee shop has tracked their morning sales of cups of coffee and observed the following distribution.

Number of cups sold, X	145	150	155	160	170
Probability, $P(X = x)$	0.15	0.22	0.37	0.19	0.07

a. Compute the expected sales.

M = E(X) = 145(.15) + 150(.22) + 155(.37) + 160(.19) + 170(.07) = 154.4 (ups sold

Variance:
$$\sigma^2 = Var(X) = \sum_{i} (x - \mu)^2 \cdot P(x)$$

Standard Deviation:
$$\sigma = SD(X) = \sqrt{Var(X)}$$

b. Compute the standard deviation of the sales.

Var(x)=(145-154.4)2(.15) + (150-154.4)2(.22) + (155-154.4)2(37) + (160-154.4)2(.19)+(170-154.4)2(.07)

$$G = SD(X) = \sqrt{40.64} = 6.37 \text{ cups}$$
 "average deviation from the mean"

Example 3. Is it a Fair Game?

You roll a die. If it comes up a 6, you win \$100. If not, you get to roll again. If you get a 6 the second time, you win \$50. If not, you lose.

a. Create a probability distribution for the amount you win.

	and the second second		
winnings, X	\$100	\$50	\$0
probability P(x)	1/6	5.6	5.5
		= 36	= 35

b. Find the expected amount you'll win.

c. Find the standard deviation.

Find the standard deviation.

$$Var(x) = (\$100 - 23.61)^{2}(\frac{1}{6}) + (\$50 - 23.61)^{2}(\frac{\$}{36})$$

 $+ (0 - 23.61)^{2}(\frac{2\$}{36})$
 $= \$14\$56.40 \text{ dollars}^{2}$
 $\$D(x) = \sqrt{14\$6.40} = \$38.16$ "average deviation from the mean"

d. Should you play this game if it costs \$25? Why or why not?

A fair game is defined as a game that costs as much as its expected payout. The expected profit is 0. Expected payout = cost

e. What price would make this game fair?

what's the expected value? \$ 23.61

f. Are lottery and gambling games usually fair?

NO, they are designed to have an expected loss for the consumer.

Practice

1. The probability model below describes the number of repair calls that an appliance repair shop may receive during an hour.

X = # of repair calls	0	1	2	3
P(X=x)	0.1	0.3	0.4	.2

a. Complete the table.

b. How many calls should the shop expect per hour? Include units on all means.

$$E(x) = O(.1) + I(.3) + 2(.4) + 3(.2)$$

= 1.7 repair calls per hour

c. What is the standard deviation? Include units on all standard deviations.

$$Var(X) = (0-1.7)^{2}(.1) + (1-1.7)^{2}(.3) + (2-1.7)^{2}(.4) + (3-1.7)^{2}(.2)$$

$$= 0.81 \text{ repair calls}^{2}$$

$$SD(X) = \sqrt{.81} = 0.9 \text{ repair calls per hour}$$

a. Create a probability distribution for the amount you win.

0
2_
38

b. Find the expected winnings, including units.

$$E(X) = 2\left(\frac{18}{38}\right) + 0\left(\frac{18}{38}\right) + 0\left(\frac{2}{38}\right)$$

$$= $0.95$$

c. Find the standard deviation of your winnings, including units.

$$Var(X) = (2 - .95)^{2}(\frac{18}{38}) + (0 - .95)^{2}(\frac{18}{38}) + (0 - .95)(\frac{1}{38})$$

$$= .9972 \quad dollars^{2}$$

$$SD(X) = \sqrt{.9972} \quad \% \$1.00$$

d. Is this a fair game at \$1?

e. What is your expected profit or loss?